Customize the use of cookies

This website uses cookies to provide more efficient navigation and analyze visitor traffic. You will find detailed information about them below.

Cookies classified as "Necessary" will be stored in your browser, as they are essential for enabling the basic functionalities of the site. We also use third-party cookies aimed at analytics (Google Analytics), which help us analyze how you use this website. You can choose to enable or disable some of these cookies, but doing so may affect your browsing experience.

Always Active

These cookies are required to provide basic functionality of the website and cannot be disabled. They do not store any private or personally identifiable data.

These cookies allow us to understand how visitors interact with the website and provide information related to the number of visits, traffic sources, and bounce rates.

These cookies are used to provide visitors with personalized ads based on the pages they previously visited and to analyze the effectiveness of advertising campaigns. They are usually related to the integration of social media videos on the website.

Date: 30/03/2022.
Publication type: Research article.
Author(s): Daniel Pulido, Iñigo Capellán-Pérez, Margarita Mediavilla, Carlos de Castro, Fernando Frechoso Escudero.
Keywords: Energy & Materials, Integrated assessment models

Short description:

Today, we are witnesses to the early days of a change in the mobility technology as oil reserves decline and society’s environmental awareness increases. Electric technologies are intended to replace those based on hydrocarbons as they have been initially conceived as more environmentally friendly and energy efficient. However, the problem of the future availability of the materials required for this change has arisen. A large demand for this type of mobility could contribute to the depletion of these resources, leading to major problems for the manufacture of vehicles and all other technologies that use these materials if we do not find alternatives that allow us not to deplete these natural resources. These alternatives may involve not only a change in the materials used in electric vehicles but also the use of different modes of transport. To help us estimate which materials related to the transition in the transport sector might be most critical in the future globally, the MEDEAS system dynamics simulation model will be used. Once the simulations on different scenarios have been run, we observe how aluminium, copper, cobalt, lithium, manganese and nickel have such a high demand that would practically cause the exhaustion of their reserves in several scenarios, so we will propose alternative measures to try to avoid their exhaustion due to the use of this type of mobility.